

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Казанский государственный аграрный университет» (ФГБОУ ВО Казанский ГАУ)

Институт механизации и технического сервиса

Кафедра физики и математики

яйства образовательного образовательного образовательного образовательного образовательного образовательной работе, образовательного образовательного

Рабочая программа программаний

Физика

Направление подготовки **35.03.06 Агроинженерия**

Направленность (профиль) подготовки Технический сервис в АПК Уровень бакалавриата

Форма обучения очная, заочная

Год поступления обучающихся: 2019

Казань - 2019

Составитель Мурзин С.П, кандидат физико-математических наук, доцент.

Протокол ученого совета ИМи ТС № 8 от 25 апреля 2019 г.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения ОПОП бакалавриата по направлению подготовки 35.03.06 Агроинженерия, обучающийся должен овладеть следующими результатами по дисциплине «Физика»

Код индикатора	Индикатор достижения	Перечень планируемых результатов			
достижения компетенции					
-	ОПК-1. Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением				
знании основных зако	информационных техі				
ОПК-1.1	Демонстрирует знание	Знать: фундаментальные законы			
OHK-1.1		физики, в т.ч. физические основы			
		механики, молекулярной физики и			
	математических,	термодинамики, электричества и			
	естественнонаучных и общепрофессиональных	1			
	дисциплин,				
		ядерной физики Уметь: Демонстрировать знания			
		Уметь: Демонстрировать знания фундаментальных законов физики, в			
	решения типовых задач в области	т.ч. физические основы механики,			
		молекулярной физики и			
	агроинженерии	термодинамики, электричества и			
		магнетизма, оптики, атомной,			
		ядерной физики для решения			
		стандартных задач в соответствии с			
		направленностью профессиональной деятельности			
		деятельности Владеть: навыками			
		демонстрировать фундаментальные			
		законы физики, в т.ч. физические			
		основы механики, молекулярной			
		физики и термодинамики,			
		электричества и магнетизма, оптики,			
		атомной, ядерной физики в			
		профессиональной деятельности			
ОПК-1.2	Использует знания	Знать: Как использовать знание			
0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	основных законов	основных законов физики для			
	математических и	решения стандартных задач в			
	естественных наук для	агроинженерии			
	решения стандартных	Уметь: Использовать знания			
	задач в агроинженерии	основных законов физики для			
	1	решения стандартных задач в			
		агроинженерии			
		Владеть: навыками использования			
		знаний основных законов физики			
		для решения стандартных задач в			
		агроинженерии			

2. Место дисциплины в структуре ОПОП ВО

Дисциплина относится к обязательной части блока Б1 «Дисциплины».

Изучается в 2-4 семестрах, на 1 и 2 курсах при очной форме обучения, на 1 и 2 курсах при заочной форме обучения.

Изучение дисциплины предполагает предварительное освоение школьной программы по физике и математике.

Дисциплина является основополагающей при изучении следующих дисциплин учебного плана: Гидравлика, Теплотехника, Электротехника и электроника и др.

3 Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 9 зачетных единиц, 324 часов

Таблица 3.1 - Распределение фонда времени по семестрам и видам занятий

	Очі	ное обуче	ение	Зас	очное обуч	ение
Вид учебных занятий	2 сем.	3 сем.	4 сем.	1 курс сессия 2	2 курс сессия 1	2 курс Сессия 2
Контактная работа	69	37	51	17	15	19
обучающихся с						
преподавателем (всего)						
в том числе:						
лекции	34	18	16	8	4	6
лабораторные занятия	18	18	18	4	10	-
практические занятия	16	-	16	4	-	12
экзамен	-	-	1	-	-	1
зачет	1	1	-	1	1	-
Самостоятельная работа	75	35	57	91	93	89
обучающихся						
(всего)						
в том числе:						
-подготовка к						-
лабораторным занятиям	30	21	19	33	55	45
-подготовка к практическим						35
занятиям	20	-	12	33	-	-
- работа с тестами и						9
вопросами для	10	5	11	21	34	
самоподготовки						
- выполнение курсового	-	-	-	-	-	
проекта						
- подготовка к зачету	15	9	15	4	4	
(экзамену)						
Общая трудоемкость	144	72	108	108	108	108
час						
	4	2	3	4	2	3
з ач. е д.						

4 Содержание дисциплины (модуля), структурированное по разделам и темам с указанием отведенного на них количества академических часов и видов учебных занятий

Таблица 4.1 - Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Раздел дисциплины	Ви	Виды учебной работы, включая самостоятельную работу студентов и								
те			трудоемкость								
МЫ		лег	лекции		лекции лаб. работы практич. занятия		всего ауд. часов		самост. работа		
		очно	заоч.	онно	заоч.	очно	заоч.	очно	заоч.	очно	заоч.
1	Механика	14	4	10	4	8	4	32	12	29	54
2	Термодинамика и	14	4	8	2	6	3	28	9	27	48
	молекулярная										
	физика										
3	Электричество и	14	4	12	2	6	3	32	9	27	45
	магнетизм										
4	Электромагнетизм.	10	2	8	2	4	2	22	6	27	49
	Колебания и волны										
5	Оптика	10	2	8	2	6	2	24	6	30	46
6	Основы атомной и	6	2	8	2	2	2	16	6	27	31
	ядерной физики										
	Итого	68	18	54	14	32	16	154	48	167	273

Таблица 4.2 - Содержание дисциплины, структурированное по разделам и темам

№	№ Содержание раздела (темы) дисциплины		, ак.час /заочно)
		онно	заочно
1	Механика		1
	Лекции		
1.1	Тема лекции 1. Кинематика материальной точки и поступательного движения твердого тела. Кинематика вращательного движения.	2	0,5
1.2	Тема лекции 2. Законы динамики материальной точки и системы материальных точек. Законы Ньютона.	2	0,5
1.3	Тема лекции 3. Динамика вращательного движения абсолютно твердого тела.	2	0,75
1.4	Тема лекции 4. Работа и механическая энергия. Законы сохранения в механике.	2	0,75
1.5	Тема лекции 5. Движение в неинерциальных системах отсчета.	2	0,5
1.6	Тема лекции 6. Тяготение. Элементы теории поля.	2	0,5
1.7	Тема лекции 7. Элементы специальной теории относительности.	2	0,5
	Лабораторные работы		
1.8	Определение коэффициента трения покоя.	2	2
1.9	Измерение коэффициента трения качения с помощью наклонного маятника.	2	
1.10	Определение ускорения свободного падения при помощи математического маятника.	2	2

1 11	O 11	2	1
1.11	Определение коэффициента возвращающей силы и периода	2	
1 10	колебаний груженой пружины.	2	
1.12	Определение момента инерции механической системы при помощи маятника Максвелла.	2	
	Практические занятия		
1.13	Приктические занятия Решение задач по кинематике и динамике материальной точки	4	2
1.13	Решение задач по кинематике и динамике вращательного	4	2
1.14	движения твердого тела	4	2
2	Термодинамика и молекулярная физика		
	Лекции		
2.1	Тема лекции 1. Основы молекулярно-кинетической теории	2	0,5
	идеальных газов.	_	0,0
2.2	Тема лекции 2. Опытные законы идеального газа.	2	1
2.3	Тема лекции 3. Распределение Максвелла.	2	0,5
2.4	Тема лекции 4. Первое начало термодинамики и его	2	0,5
2.7	применение к изопроцессам.	_	0,5
2.5	Тема лекции 5. Энтропия и ее статистическое толкование.	2	0,5
2.6	Тема лекции 6. Тепловые двигатели и холодильные машины.	2	0,5
2.7	Тема лекции 7. Явления переноса в газах. Реальные газы.	2	0,5
2.1	Лабораторные работы		0,5
2.8	Определение удельного веса твердых тел и жидкостей	2	
2.0	методом гидростатического взвешивания.	_	
2.9	Определение коэффициента поверхностного натяжения	2	
2.7	воды по весу капель.	_	
2.10	Изучение движения тел в вязкой среде.	2	2
2.11	Определение отношения удельных теплоемкостей воздуха	2	
2.11	методом адиабатического расширения.	-	
	Практические занятия		
2.12	Решение задач на основное уравнение молекулярно-кинетической	4	1,5
	теории, законы идеального газа и уравнения переноса.		,
2.13	Решение задач на I-ое и II-ое начало термодинамики	4	1,5
3	Электричество и магнетизм		
	Лекции		
3.1	Тема лекции 1. Электростатическое поле и его	2	0,5
	характеристики.		
3.2	Тема лекции 2. Теорема Остроградского-Гаусса для	2	0,5
	электростатического поля в вакууме и в диэлектрической		
	среде.		
3.3	Тема лекции 3. Проводники в электростатическом поле.	2	0,5
3.4	Тема лекции 4. Законы постоянного тока.	2	0,75
3.5	Тема лекции 5. Электрические токи в металлах, вакууме и газах.	2	0,5
3.6	Тема лекции 6. Магнитное поле постоянного электрического	2	0,75
	тока.		,
3.7	Тема лекции 7. Действие магнитного поля на движущиеся	2	0,5
	заряды и проводники с током. Магнитное поле в веществе.		
	Лабораторные работы		
3.8	Измерение сопротивлений проводников методом мостика	2	
	Уитстона.		
3.9	Снятие характеристик электрической лампы.	2	2
3.10	Изучение процессов заряда и разряда конденсаторов.	4	
3.11	Определение ёмкости конденсаторов с помощью	4	

	переменного тока.		
	Практические занятия		
3.12	Решение задач по электростатике (закон Кулона,	2	1
	напряженность электрического поля, работа сил поля,		
	ёмкость конденсаторов).		
3.13	Решение задач по электрическому току (сила тока, закон Ома	2	1
	для участка цепи, закон Ома для замкнутой цепи, закон		
	Джоуля-Ленца).		
3.14	Решение задач по магнитному полю (закон Ампера, закон	2	1
	Био-Савара-Лапласа, магнитное поле около проводников	_	
	различной формы).		
4	Электромагнетизм. Колебания и волны		
	Лекции		
4.1	Тема лекции 1. Электромагнитная индукция.	2	0,25
4.2	Тема лекции 2. Основы теории Максвелла для	2.	0,5
7.2	электромагнитного поля.	-	0,5
4.3	Тема лекции 3. Свободные гармонические колебания.	2	0,25
1.5	Волны в упругой среде	2	0,23
4.4	Тема лекции 4. Затухающие и вынужденные колебания	2	0,5
4.5	Тема лекции 5. Электромагнитные волны. Переменный ток	2	0,5
т.Э	Лабораторные работы		0,5
4.6	Изучение релаксационных колебаний в схеме с	2	
4.0	газоразрядной лампой	2	
4.7	Определение индуктивности катушки с помощью	2	
7.7	переменного тока	2	
4.8	Изучение влияния различных элементов электрических	2	
	фильтров на характер выпрямляемого тока		
4.9	Изучение резонанса напряжений в цепи переменного тока	2	2
	Практические занятия		
4.10	Решение задач на законы электромагнитной индукции (закон	2	1
	Фарадея и правило Ленца, явление самоиндукции, явление		
4.1.1	взаимоиндукции)		
4.11	Решение задач по теме колебания и волны (механические	2	1
	колебания, математический и физический маятники, сложение		
	колебаний, колебательный контур, распространение		
5	механических и электромагнитных волн) Оптика		
3	Лекции		
5.1	Тема лекции 1. Интерференция и дифракция света.	2	0.5
5.2	Тема лекции 1. интерференция и дифракция света.Тема лекции 2. Распространение света в веществе.	2	0,5
5.3	Тема лекции 2. Распространение света в веществе.Тема лекции 3. Поляризация света.	2	0,5
5.4	Тема лекции 3. Поляризация света.Тема лекции 4. Тепловое излучение. Основы квантовой	4	0,5
3.4	•	4	0,3
	ОПТИКИ.		_
5.5	Пабораторные работы Определение показателя преломления стекла.	2	_
5.6		2	_
5.6	Определение оптической силы и показателя преломления	2	
- 7	стеклянной линзы.	_	-
5.7	Определение длины световой волны при помощи	2	2
<i>5</i> 0	дифракционной решетки.	2	+
5.8	Поляризованный свет. Проверка закона Малюса.	2	

	Практические занятия		
5.9	Решение задач на законы геометрической оптики.	2	1
5.10	Решение задач на законы интерференции, дифракции,	4	1
	поляризации света.		
6	Основы атомной и ядерной физики		
	Лекции		
6.1	Тема лекции 1. Строение и линейчатые спектры	2	1
	водородоподобных систем.		
6.2	Тема лекции 2. Ядра и их превращения. Элементарные	4	1
	частицы.		
	Лабораторные работы		
6.3	Исследование поглощения и пропускания света веществом.	2	2
6.4	Исследование свойств вакуумного фотоэлемента.	4	
6.5	Изучение спектра атома водорода.	2	
	Практические занятия		
6.6	Решение задач по элементам атомной и ядерной физики.	2	2

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

- 1. Методические указания для самостоятельной подготовки к выполнению лабораторных работ по физике. Часть І. Механика/ А.А.Валиев, С.П. Курзин С.П., Р.Ш. Лотфуллин. Казань: Изд-во Казанского ГАУ, 2016. 44 с.
- 2. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть II. Молекулярная физика и термодинамика/ А. А. Валиев, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2017. 28 с.
- 3. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть III. Электричество и магнетизм/ А.А.Валиев, Е.Р.Газизов, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2018. 44 с.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Представлен в приложении в рабочей программе дисциплины «Физика»

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная учебная литература:

- 1. Грабовский, Р. И. Курс физики : учебное пособие / Р. И. Грабовский. 12-е изд., стер. Санкт-Петербург: Лань, 2012. 608 с. ISBN 978-5-8114-0466-7. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/3178 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 2. Грабовский, Р. И. Сборник задач по физике : учебное пособие/ Р. И. Грабовский. 4-е изд., стер. Санкт-Петербург: Лань, 2012. 128 с. ISBN 978 5-8114-0462-9. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/3899 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.

- 3. Зисман, Г. А. Курс общей физики: учебное пособие: в 3 томах / Г. А. Зисман, О. М. Тодес. 8-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 1: Механика. Молекулярная физика. Колебания и волны 2019. 340 с. ISBN 978-5-8114-4101-3. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/115200 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 4. Зисман, Г. А. Курс общей физики: учебное пособие: в 3 томах / Г. А. Зисман, О. М. Тодес. 8-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество и магнетизм 2019. 360 с. ISBN 978-5-8114-4102-0. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/115201 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 5. Зисман, Г. А. Курс общей физики: учебное пособие: в 3 томах / Г. А. Зисман, О. М. Тодес. 7-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 3: Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц 2019. 504 с. ISBN 978-5-8114-4103-7. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/115202 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 6. Трофимова, Т.И. Курс физики: учебник для вузов/ Т.И.Трофимова. 18-е издание.— М.: Изд-во Academia, 2010. 560с. Текст непосредственный.

Дополнительная учебная литература:

- 1. Савельев, И. В. Курс физики: учебное пособие: в 3 томах / И. В. Савельев. 7-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 1: Механика. Молекулярная физика 2018. 356 с. ISBN 978-5-8114-0685-2. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/106894 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 2. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И. В. Савельев. 15-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество и магнетизм. Волны. Оптика 2019. 500 с. ISBN 978-5-8114-3989-8. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/113945 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 3. Савельев, И. В. Курс физики : учебное пособие : в 3 томах / И. В. Савельев. 7-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2019. 308 с. ISBN 978-5-8114-4254-6.— Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/117716 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 4. Савельев, И. В. Сборник вопросов и задач по общей физике: учебное пособие / И. В. Савельев. 9-е изд., стер. Санкт-Петербург: Лань, 2019. 292 с. ISBN 978-5-8114-4714-5. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/125441 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 5. Клингер, А. В. Задачник по физике с элементами теории и примерами решения: учебное пособие/ А. В. Клингер. 3-изд. Москва : ФЛИНТА, 2019. 240 с. ISBN 978-5-9765-0214-7. Текст: электронный// Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/135332 (дата обращения: 22.04.2020). Режим доступа: для авториз. пользователей.
- 6. Браже, Р. А. Вопросы и упражнения на понимание физики : учебное пособие / Р. А. Браже. 3-е изд., стер. Санкт-Петербург: Лань, 2018. 72 с. ISBN 978-5-8114-2498-6. Текст: электронный// Лань: электронно-библиотечная система. URL:

https://e.lanbook.com/book/103899 (дата обращения: 13.05.2020). — Режим доступа: для авториз. пользователей.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Официальный интернет-портал Министерства сельского хозяйства РФ (Минсельхоз России), http://www.mcx.gov.ru/
- Официальный интернет-портал Министерства сельского хозяйства и продовольствия Республики Татарстан. http://agro.tatarstan.ru/
- 3. Электронно-библиотечная система «Лань» https://e.lanbook.com
- 4. Электронно-библиотечная система «Znanium.com» https://znanium.com

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Основными видами учебных занятий для студентов по данному курсу учебной дисциплины являются: лекции, лабораторные (практические) занятия и самостоятельная работа студентов.

Методические указания к лекционным занятиям. В лекциях излагаются основные теоретические сведения, составляющие научную концепцию курса. Для успешного освоения лекционного материала рекомендуется:

- после прослушивания лекции прочитать её в тот же день;
- выделить маркерами основные положения лекции;
- структурировать лекционный материал с помощью помет на полях, в соответствии с примерными вопросами для подготовки.

В процессе лекционного занятия студент должен выделять важные моменты, выводы, основные положения, выделять ключевые слова, термины. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удаётся разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на занятии. Студенту рекомендуется во время лекции участвовать в обсуждении проблемных вопросов, высказывать и аргументировать своё мнение. Это способствует лучшему усвоению материала лекции и облегчает запоминание отдельных выводов. Прослушанный материал лекции студент должен проработать. От того, насколько эффективно это будет сделано, зависит и прочность усвоения знаний. Рекомендуется перечитать текст лекции, выявить основные моменты в каждом вопросе, затем ознакомиться с изложением соответствующей темы в учебниках, проанализировать дополнительную учебно-методическую и научную литературу по теме, расширив и углубив свои знания. В процессе рекомендуется выписывать из изученной литературы и подбирать свои примеры к изложенным на лекции положениям

Методические рекомендации студентам к лабораторным (практическим) занятиям. При подготовке к лабораторным занятиям рекомендуется следующий порядок действий:

- 1. Внимательно проанализировать поставленные теоретические вопросы, определить объем теоретического материала, который необходимо усвоить.
- 2. Изучить лекционные материалы, соотнося их с вопросами, вынесенными на обсуждение.
- 3. Прочитать рекомендованную обязательную и дополнительную литературу, дополняя лекционный материал (желательно делать письменные заметки).
- 4. Отметить положения, которые требуют уточнения, зафиксировать возникшие вопросы.

5. После усвоения теоретического материала необходимо приступать к выполнению практического задания. Практическое задание рекомендуется выполнять письменно.

Методические рекомендации студентам к самостоятельной работе. Самостоятельная работа студентов является составной частью их учебной работы и имеет целью закрепление и углубление полученных знаний, умений и навыков, поиск и приобретение новых знаний.

Самостоятельная работа студентов включает в себя освоение теоретического материала на основе лекций, основной и дополнительной литературы; подготовку к практическим занятиям в индивидуальном и групповом режиме. Советы по самостоятельной работе с точки зрения использования литературы, времени, глубины проработки темы и др., а также контроль за деятельностью студента осуществляется во время занятий.

Целью преподавателя является стимулирование самостоятельного, углублённого изучения материала курса, хорошо структурированное, последовательное изложение теории на лекциях, отработка навыков решения задач и системного анализа ситуаций на практических занятиях, контроль знаний студентов.

При подготовке к лабораторным занятиям и выполнении контрольных заданий студентам следует использовать литературу из приведенного в данной программе списка, а также руководствоваться указаниями и рекомендациями преподавателя.

Перед каждым лабораторным занятием студент изучает план занятия с перечнем тем и вопросов, списком литературы и домашним заданием по вынесенному на занятие материалу.

Студенту рекомендуется следующая схема подготовки к занятию и выполнению домашних заданий:

- проработать конспект лекций;
- проанализировать основную и дополнительную литературу, рекомендованную по изучаемому разделу (модулю);
 - изучить решения типовых задач (при наличии);
 - решить заданные домашние задания;
 - при затруднениях сформулировать вопросы к преподавателю.

В конце каждого лабораторного занятия студенты получают «домашнее задание» для закрепления пройденного материала. Домашние задания необходимо выполнять к каждому занятию. Сложные вопросы можно вынести на обсуждение на занятии или на индивидуальные консультации.

Перечень методических указаний по дисциплине:

- 1. Методические указания для самостоятельной подготовки к выполнению лабораторных работ по физике. Часть І. Механика/ А.А.Валиев, С.П. Курзин С.П., Р.Ш. Лотфуллин. Казань: Изд-во Казанского ГАУ, 2016.-44 с.
- 2. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть II. Молекулярная физика и термодинамика/ А. А. Валиев, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2017. 28 с.
- 3. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть III. Электричество и магнетизм/ А.А.Валиев, Е.Р.Газизов, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2018. 44 с.
 - 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Форма проведения	Используемые	Перечень	Перечень
занятия	информационные	информационных	программного
	технологии	справочных систем	обеспечения
		(при необходимости)	
Лекции	Мультимедийные	Информационно-	1. Операционная
	технологии в сочетании	правовое обеспечение	система Microsoft
	с технологией	«Гарант-аэро» -	Windows 7 Enterprise
	проблемного	сетевая версия	для образовательных
Практические	изложения		организаций;
занятия			2. Офисное ПО из
			состава пакета
Лабораторные			Microsoft Office
работы			Standart 2016;
риссты			3. Антивирусное
			программное
Самостоятельная			обеспечение Kaspersky
работа			Endpoint Security для
			бизнеса;
			4. LMS Moodle -
			модульная объектно-
			ориентированная
			динамическая среда
			обучения (Software free
			General Public License
			(GPL)).);
			5. КОМПАС-3DV14 –
			система трёхмерного
			моделирования,
			универсальная система
			автоматизированного
			2D-проектирования; 4.«Антиплагиат. ВУЗ».
			ЗАО «Анти-Плагиат»

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Лекции	Учебная аудитория № 813 для проведения занятий лекционного типа.
	Стулья, парты, доска аудиторная, трибуна, видеопроектор, экран,
	ноутбук, набор учебно-наглядных пособий.
Лабораторные	Специализированная лаборатория № 810 механики, электричества и
занятия	магнетизма.
	1. Комплекты приборов физических измерений ЕРМ.
	2. Комплект демонстрационных приборов.
	3. Стенды проведения лабораторных работ.
	4. Осциллографы, генераторы, источники напряжения.
	5. Стулья, парты, доска аудиторная, набор учебно-наглядных пособий.
	Специализированная лаборатория № 808 молекулярной физики.
	1. Прибор по определению коэф. внутреннего трения воздуха.
	2. Прибор по определению адиабатической постоянной.

	3. Весы лаборатории ВАР -200.		
	4. Стулья, парты, доска аудиторная, трибуна, набор учебно-наглядных		
	пособий.		
	Специализированная лаборатория № 812 оптики.		
	1. Стеклянно-призменный спектрометр-монохроматор УМ-2.		
	2. Рефрактометр ИРФ-21.		
	3. Микроскоп « Биолам».		
	4. Фолоколлориметр КФК-2.		
	5. Поляриметр «Поломат».		
	6. Стулья, парты, доска аудиторная, трибуна, набор учебно-наглядных		
	пособий.		
Самостоятельная	Учебная аудитория № 518 - помещение для самостоятельной работы,		
работа	текущего контроля и промежуточной аттестации.		
	Компьютеры с возможностью подключения к сети «Интернет» и доступом		
	в электронную информационно-образовательную среду Казанского ГАУ,		
	проектор мультимедийный, экран, доска аудиторная, стол и стул для		
	преподавателя, столы и стулья для студентов, трибуна.		