### МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ



### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

## «Казанский государственный аграрный университет» (ФГБОУ ВО КАЗАНСКИЙ ГАУ)

Институт механизации и технического сервиса Кафедра физики и математики

УТВЕРЖДАЮ Проректор по учебной работе и цифровизации, доцент

А.В. Дмитриев «22» мая 2025 г.

### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

#### Физика

Направление подготовки **05.03.06** Экология и природопользование

Направленность (профиль) подготовки **Экология** 

Форма обучения очная

| Составитель: доцент, к.сх.н.                                                                          | Валиев А.А.                       |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|
| Должность, ученая степень, ученое звание                                                              | Ф.И.О.                            |
| Рабочая программа дисциплины обсуждена и одобре математики «21» апреля 2025 года (протокол № 8)       | ена на заседании кафедры физики и |
| Заведующий кафедрой:                                                                                  |                                   |
| д.т.н., профессор                                                                                     | Ибятов Р.И.                       |
| Должность, ученая степень, ученое звание                                                              | Ф.И.О.                            |
| Рассмотрена и одобрена на заседании методической технического сервиса «24» апреля 2025 года (протокол | •                                 |
| Председатель методической комиссии:                                                                   |                                   |
| к.т.н.                                                                                                | Зиннатуллина А.Н.                 |
| Должность, ученая степень, ученое звание                                                              | Ф.И.О.                            |
| Согласовано:<br>Директор (декан)                                                                      | <u>Медведев В.М.</u> Ф.И.О.       |
|                                                                                                       |                                   |

Протокол Ученого совета института № 10 от «30» апреля 2025 года

# 1 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения основной профессиональной образовательной программы (ОПОП) по направлению подготовки 05.03.06 –«Экология и природопользование, направленность (профиль) «Экология», обучающийся по дисциплине «Физика» должен овладеть следующими результатами:

| Код индикатора<br>достижения<br>компетенции | Индикатор<br>достижения<br>компетенции                                                                                 | Перечень планируемых результатов обучения по дисциплине                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                        | ния фундаментальных разделов наук о Земле, иклов при решении задач в области экологии и                                                                                                                                                                                                                                                                                                                                                              |
| ОПК-1.1                                     | Знает основы математики, физики, химии, естественных наук, современных информационных технологий и программных средств | Знать: базовые понятия фундаментальных разделов физики в объеме, необходимом для освоения физических основ в экологии и природопользования  Уметь: использовать базовые понятия фундаментальных разделов физики в объеме, необходимом для освоения физических основ в экологии и природопользования  Владеть: базовыми понятиями фундаментальных разделов физики в объеме, необходимом для освоения физических основ в экологии и природопользования |

### 2 Место дисциплины в структуре ОПОП ВО

Дисциплина относится к обязательной части блока 1 «Физика». Изучается в 2 семестре, на 1 курсе при очной форме обучения.

Изучение дисциплины предполагает предварительное освоение курса физики общеобразовательной школы.

Дисциплина является основополагающей, при изучении следующей дисциплины: «Геодезия с основами землеустройства».

3 Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных единиц (з.е.), 108 часов

Таблица 3.1 - Распределение фонда времени по семестрам и видам занятий, в часах

| Вид учебных занятий | Очное обучение | Заочное |
|---------------------|----------------|---------|
|---------------------|----------------|---------|

|                                      |           | обучение     |
|--------------------------------------|-----------|--------------|
|                                      | 2 семестр | Курс, сессия |
| Контактная работа обучающихся с      | 53        | -            |
| преподавателем (всего, час)          |           |              |
| в том числе:                         |           |              |
| - лекции, час                        | 18        | -            |
| в том числе в виде практической      |           |              |
| подготовки (при наличии), час        |           |              |
| - лабораторные занятия, час          | 34        | -            |
|                                      |           |              |
| - экзамен, час                       | 1         | -            |
| Самостоятельная работа               | 55        | _            |
| обучающихся (всего, час)             |           |              |
| в том числе:                         | 20        | -            |
| -подготовка к лабораторным занятиям, |           |              |
| час                                  |           |              |
| - работа с тестами и вопросами для   | 20        | -            |
| самоподготовки, час                  |           |              |
| - подготовка к зачету, час           | 15        | -            |
| Общая трудоемкость час               | 108       | -            |
| 3.e.                                 | 3         | -            |

# 4 Содержание дисциплины, структурированное по разделам и темам с указанием отведенного на них количества академических часов и видов учебных занятий

Таблица 4.1 - Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

| №            |                                                                | Виды учебной работы, включая самостоятельную работу студентов и трудоемкость, в часах |       |                 |       | /дентов                   |       |      |                     |
|--------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|-----------------|-------|---------------------------|-------|------|---------------------|
| те<br>м<br>ы | Раздел дисциплины                                              | лек                                                                                   | сции  | лаборат<br>рабо | -     | всего<br>аудитор<br>часон | ных   | 5    | ятельна<br>н<br>ота |
|              |                                                                | онно                                                                                  | заоч. | очно            | заоч. | онно                      | заоч. | онно | заоч.               |
| 1            | Механика                                                       | 4                                                                                     | -     | 10              | 1     | 14                        | -     | 15   | -                   |
| 2            | Термодинамика и молекулярная физика                            | 4                                                                                     | -     | 8               | -     | 12                        | -     | 15   | -                   |
| 3            | Электричество и магнетизм. Электромагнетизм.Ко лебания и волны | 6                                                                                     | -     | 8               | -     | 14                        | -     | 10   | -                   |

| 4 | Оптика. Основы квантовой физики | 4  | - | 8  | - | 12 | - | 15 | - |
|---|---------------------------------|----|---|----|---|----|---|----|---|
|   | Итого                           | 18 | - | 34 | - | 52 | - | 55 | - |

Таблица 4.2 - Содержание дисциплины, структурированное по разделам и темам

|     |                                        |          | Время, ак.ч (очно/ очно-за                                |        |                                                           |
|-----|----------------------------------------|----------|-----------------------------------------------------------|--------|-----------------------------------------------------------|
|     |                                        | ОЧІ      | НО                                                        | заочно |                                                           |
| No  | № Содержание раздела (темы) дисциплины |          | в том числе в форме практической подготовки (при наличии) | всего  | в том числе в форме практической подготовки (при наличии) |
| 1   | <u>Механика</u>                        |          | ,                                                         | •      | ,                                                         |
|     | Лекции                                 |          |                                                           |        |                                                           |
| 1.1 | Законы кинематики и динамики           | 2        | _                                                         | -      | _                                                         |
|     | поступательного и вращательного        |          |                                                           |        |                                                           |
|     | движений. Законы Ньютона.              |          |                                                           |        |                                                           |
| 1.2 | Основной закон вращательного           | 2        | -                                                         | -      | _                                                         |
|     | движенияЭнергия и работа. Законы       |          |                                                           |        |                                                           |
|     | сохранения импульса, момента импульса, |          |                                                           |        |                                                           |
|     | энергии. Элементы законов космоса.     |          |                                                           |        |                                                           |
|     | Лабораторные работы                    |          |                                                           |        |                                                           |
| 1.3 | Определение ускорения свободного       | 2        | -                                                         | -      | -                                                         |
|     | падения при помощи математического     |          |                                                           |        |                                                           |
|     | маятника.                              |          |                                                           |        |                                                           |
| 1.4 | Определение коэффициента               | 2        | -                                                         | -      | -                                                         |
|     | возвращающей силы и периода            |          |                                                           |        |                                                           |
|     | колебаний груженой пружины.            |          |                                                           |        |                                                           |
| 1.5 | Определение коэффициента трения        | 2        | _                                                         |        | _                                                         |
| 1.5 | покоя.                                 | 2        |                                                           | _      |                                                           |
|     | nokoz.                                 |          |                                                           |        |                                                           |
| 1.6 | Измерение коэффициента трения качения  | 4        | _                                                         | _      | _                                                         |
| 1.0 | с помощью наклонного маятника.         | •        |                                                           |        |                                                           |
| 2   | Термодинамика и молекулярная физика    | <u> </u> |                                                           |        | 1                                                         |
|     |                                        | •        |                                                           |        |                                                           |
|     | Лекции                                 |          |                                                           |        |                                                           |
| 2.1 | Законы идеальных газов. Основы         | 2        | -                                                         | -      | -                                                         |
|     | молекулярно-кинетической теории        |          |                                                           |        |                                                           |
|     | идеальных газов.                       |          |                                                           |        |                                                           |
| 2.2 | Первый закон термодинамики. Второй     | 2        | -                                                         | -      | -                                                         |
|     | закон термодинамики. Тепловые          |          |                                                           |        |                                                           |
|     | машины. Процессы переноса.             |          |                                                           |        |                                                           |
|     | Лабораторные работы                    |          |                                                           |        |                                                           |
| 2.3 | Определение коэффициента               | 2        | - T                                                       | -      | -                                                         |
|     | поверхностного натяжения воды по       |          |                                                           |        |                                                           |
|     | весу капель.                           |          |                                                           |        |                                                           |
| 2.4 | Определение коэффициента               | 2        | -                                                         | -      | -                                                         |
|     | поверхностного натяжения воды          |          |                                                           |        |                                                           |
|     | методом отрыва кольца                  |          |                                                           |        |                                                           |
|     | , 1 <u>L</u>                           |          |                                                           |        | 1                                                         |

| 2.5 | Изучение движения тел в вязкой среде. | 2               | -          | -        | - |
|-----|---------------------------------------|-----------------|------------|----------|---|
| 2.6 | Определение отношения удельных        | 2               | -          | -        | _ |
|     | теплоемкостей воздуха методом         |                 |            |          |   |
|     | адиабатического расширения.           |                 |            |          |   |
| 3   | Электричество и магнетизм. Электрома  | гиетизм Колебан | иа и волиг |          |   |
|     | Marine Insm. Sheki poma               | incipswikonedan | ии и воли  | <u> </u> |   |
|     | Лекции                                |                 |            |          |   |
| 3.1 | Законы электростатики. Потенциал      | 2               | -          | -        | - |
|     | поля. Конденсатор. Электрический      |                 |            |          |   |
|     | ток. Закон Джоуля -Ленца.             |                 |            |          |   |
| 3.2 | Магнитное поле. Закон Ампера. Закон   | 4               | -          | -        | - |
|     | Фарадея. Электромагнитная             |                 |            |          |   |
|     | индукция. Условие возникновения       |                 |            |          |   |
|     | колебательного движения. Волновые     |                 |            |          |   |
|     | процессы. Электромагнитные волны.     |                 |            |          |   |
|     | Лабораторные работы                   |                 |            |          | 1 |
| 3.3 | Снятие характеристик электрической    | 2               | -          | -        | - |
|     | лампы.                                |                 |            |          |   |
| 3.4 | Определение индуктивности катушки     | 2               | _          | -        | - |
|     | с помощью переменного тока.           |                 |            |          |   |
| 3.5 | Изучение резонанса напряжений в       | 2               | -          | -        | - |
|     | цепи переменного тока. тока.          |                 |            |          |   |
| 3.6 | Измерение сопротивлений               | 2               | -          | -        | - |
|     | проводников методом мостика           |                 |            |          |   |
|     | Уитстона.                             |                 |            |          |   |
| 4   | Оптика. Основы квантовой физики       |                 |            | I        | I |
|     |                                       | кции            |            |          |   |
| 4.1 | Законы геометрической оптики.         | 2               | -          | -        | - |
|     | Основы волновой оптики:               |                 |            |          |   |
|     | интерференция , дифракция,            |                 |            |          |   |
|     | поляризация света. Закон Малюса.      |                 |            |          |   |
|     | Закон Брюстера. Дисперсия света.      |                 |            |          |   |
| 4.2 | Тепловое излучение. Фотоэффект.       | 2               | _          | _        | - |
|     | Основы квантовой физики.              |                 |            |          |   |
|     | Лабораторные работы                   |                 |            |          |   |
| 4.3 | Определение оптической силы и         | 2               | _          | -        | - |
|     | показателя преломления стеклянной     |                 |            |          |   |
|     | линзы.                                |                 |            |          |   |
| 4.4 | Поляризованный свет. Проверка         | 2               | _          | -        | - |
|     | закона Малюса.                        | _               |            |          |   |
| 4.5 | Определение длины световой волны      | 2               | _          | _        | _ |
|     | при помощи дифракционной решетки      | _               |            |          |   |
| 4.6 | Исследование свойств вакуумного       | 2               | _          | _        | _ |
|     | фотоэлемента.                         | _               |            |          |   |
|     | φοτοσποιτια.                          |                 |            |          |   |

# 5 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

1. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть II. Молекулярная физика и термодинамика/ А. А. Валиев, С.П.Курзин. – Казань: Изд-во Казанского ГАУ, 2017.-28 с.

- 2. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть III. Электричество и магнетизм/ А.А.Валиев, Е.Р.Газизов, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2018. 44 с.
- 3. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике «Изучение законов внешнего фотоэффекта» /Р.Г. Рахматуллина, А.А.Валиев.- Казань: Изд-во Казанского ГАУ, 2021. 27 с.
- 4. Сборник задач по дисциплине «Теплотехника»: Для обучающихся по направлениям подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», 35.03.06 «Агроинженерия», 20.03.01- «Техносферная безопасность» и специальности 23.05.01 «Наземные транспортно-технологические средства». Казань: Казанский государственный аграрный университет, 2022. 130 с. EDN IPIXAG.
- 5. Изучение поверхностного натяжения и внутреннего трения жидкостей: лабораторный практикум. Казань : Казанский государственный аграрный университет, 2022.-38 с.

## 6 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Представлен в приложении к рабочей программе дисциплины «Физика»

## 7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

### Основная учебная литература:

- 1. Грабовский, Р. И. Курс физики : учебное пособие для вузов / Р. И. Грабовский. 13-е изд., стер. Санкт-Петербург : Лань, 2022. 608 с. ISBN 978-5-8114-9073-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/184052 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 2. Грабовский, Р. И. Сборник задач по физике : учебное пособие / Р. И. Грабовский. 4-е изд., стер. Санкт-Петербург : Лань, 2022. 128 с. ISBN 978 5-8114-0462-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/210959 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 3. Савельев, И. В. Сборник вопросов и задач по общей физике / И. В. Савельев. 11-е изд., стер. Санкт-Петербург : Лань, 2023. 292 с. ISBN 978-5-507-46106-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/297674 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 4. Савельев, И. В. Курс физики. В 3 томах. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. 8-е изд., стер. Санкт-Петербург : Лань, 2023. 308 с. ISBN 978-5-507-46177-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/302249 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 5. Мелких, А. В. Теплофизика / А. В. Мелких. Санкт-Петербург : Лань, 2023. 216 с. ISBN 978-5-507-45407-5. Текст : электронный // Лань : электронно-библиотечная система. —

- URL: https://e.lanbook.com/book/302702 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 6. Круглов, Г. А. Теплотехника / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. 4-е изд., стер. Санкт-Петербург : Лань, 2022. 208 с. ISBN 978-5-507-45269-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/263066 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 7. Зисман, Г. А. Курс общей физики : учебное пособие для вузов : в 3 томах / Г. А. Зисман, О. М. Тодес. 8-е изд., стер. Санкт-Петербург : Лань, 2022 Том 3 : Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц 2022. 504 с. ISBN 978-5-507-44508-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/233285 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 8. Зисман, Г. А. Курс общей физики. В 3 томах. Том 1. Механика. Молекулярная физика. Колебания и волны / Г. А. Зисман, О. М. Тодес. 10-е изд., стер. Санкт-Петербург : Лань, 2023. 340 с. ISBN 978-5-507-47026-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/320777 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.
- 9. Зисман, Г. А. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм / Г. А. Зисман, О. М. Тодес. 9-е изд., стер. Санкт-Петербург : Лань, 2022. 360 с. ISBN 978-5-507-44379-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/222653 (дата обращения: 04.05.2024). Режим доступа: для авториз. пользователей.

### Дополнительная учебная литература:

- 1. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И. В. Савельев. 15-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество и магнетизм. Волны. Оптика 2019. 500 с. ISBN 978-5-8114-3989-8. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/113945 (дата обращения: 22.04.2024 . Режим доступа: для авториз. пользователей.
- 2. Савельев, И. В. Курс физики : учебное пособие : в 3 томах / И. В. Савельев. 7-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2019. 308 с. ISBN 978-5-8114-4254-6.— Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/117716 (дата обращения: 22.04.2024). Режим доступа: для авториз. пользователей.
- 3. Савельев, И. В. Сборник вопросов и задач по общей физике: учебное пособие / И. В. Савельев. 9-е изд., стер. Санкт-Петербург: Лань, 2019. 292 с. ISBN 978-5-8114-4714-5. Текст: электронный// Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/125441 (дата обращения: 22.04.2024). Режим доступа: для авториз. пользователей.
- 4. Клингер, А. В. Задачник по физике с элементами теории и примерами решения: учебное пособие/ А. В. Клингер. 3-изд. Москва : ФЛИНТА, 2019. 240 с. ISBN 978-5-9765-0214-

- 7. Текст: электронный// Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/135332 (дата обращения: 22.04.2024). Режим доступа: для авториз. пользователей.
- 5. Браже, Р. А. Вопросы и упражнения на понимание физики : учебное пособие / Р. А. Браже. 3-е изд., стер. Санкт-Петербург: Лань, 2018. 72 с. ISBN 978-5-8114-2498-6. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/103899 (дата обращения: 13.05.2024. Режим доступа: для авториз. пользователей.
- 6. Трофимова, Т.И. Курс физики: учебник для вузов/ Т.И.Трофимова. 18-е издание.— М.: Изд-во Academia, 2010. 560с. Текст непосредственный.

## 8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Электронная библиотечная система «Лань», https://e.lanbook.com
- 2. Научная электронная библиотека "elibrary.ru" www.elibrary.ru
- 3. Российская государственная библиотека http://www.rsl.ru (открытый доступ)
- 4. Формулы и справочная информация по математике и физике Http://fxyz.ru (открытый доступ).
  - 5. Математические формулы и справочные материалы Http://mathprof (открытый доступ).

#### 9. Методические указания для обучающихся по освоению дисциплины

Основными видами учебных занятий для студентов по данному курсу учебной дисциплины являются: лекции, лабораторные (практические) занятия и самостоятельная работа студентов.

**Методические указания к лекционным занятиям.** В лекциях излагаются основные теоретические сведения, составляющие научную концепцию курса. Для успешного освоения лекционного материала рекомендуется:

- после прослушивания лекции прочитать её в тот же день;
- выделить маркерами основные положения лекции;
- структурировать лекционный материал с помощью помет на полях, в соответствии с примерными вопросами для подготовки.

В процессе лекционного занятия студент должен выделять важные моменты, выводы, основные положения, выделять ключевые слова, термины. Обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удаётся разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на занятии. Студенту рекомендуется во время лекции участвовать в обсуждении проблемных вопросов, высказывать и аргументировать своё мнение. Это способствует лучшему усвоению материала лекции и облегчает запоминание отдельных выводов. Прослушанный материал лекции студент должен проработать. От того, насколько эффективно это будет сделано, зависит и прочность усвоения знаний.

Рекомендуется перечитать текст лекции, выявить основные моменты в каждом вопросе, затем ознакомиться с изложением соответствующей темы в учебниках, проанализировать дополнительную учебно-методическую и научную литературу по теме, расширив и углубив свои знания. В процессе рекомендуется выписывать из изученной литературы и подбирать свои примеры к изложенным на лекции положениям.

**Методические рекомендации студентам к лабораторным (практическим) занятиям.** При подготовке к лабораторным занятиям рекомендуется следующий порядок действий:

- 1. Внимательно проанализировать поставленные теоретические вопросы, определить объем теоретического материала, который необходимо усвоить.
  - 2. Изучить лекционные материалы, соотнося их с вопросами, вынесенными на обсуждение.
- 3. Прочитать рекомендованную обязательную и дополнительную литературу, дополняя лекционный материал (желательно делать письменные заметки).
  - 4. Отметить положения, которые требуют уточнения, зафиксировать возникшие вопросы.
- 5. После усвоения теоретического материала необходимо приступать к выполнению практического задания. Практическое задание рекомендуется выполнять письменно.

**Методические рекомендации студентам к самостоятельной работе.** Самостоятельная работа студентов является составной частью их учебной работы и имеет целью закрепление и углубление полученных знаний, умений и навыков, поиск и приобретение новых знаний.

Самостоятельная работа студентов включает в себя освоение теоретического материала на основе лекций, основной и дополнительной литературы; подготовку к практическим занятиям в индивидуальном и групповом режиме. Советы по самостоятельной работе с точки зрения использования литературы, времени, глубины проработки темы и др., а также контроль за деятельностью студента осуществляется во время занятий.

Целью преподавателя является стимулирование самостоятельного, углублённого изучения материала курса, хорошо структурированное, последовательное изложение теории на лекциях, отработка навыков решения задач и системного анализа ситуаций на практических занятиях, контроль знаний студентов.

При подготовке к лабораторным занятиям и выполнении контрольных заданий студентам следует использовать литературу из приведенного в данной программе списка, а также руководствоваться указаниями и рекомендациями преподавателя.

Перед каждым лабораторным занятием студент изучает план занятия с перечнем тем и вопросов, списком литературы и домашним заданием по вынесенному на занятие материалу.

Студенту рекомендуется следующая схема подготовки к занятию и выполнению домашних заданий:

- проработать конспект лекций;
- проанализировать основную и дополнительную литературу, рекомендованную по изучаемому разделу (модулю);
  - изучить решения типовых задач (при наличии);

- решить заданные домашние задания;
- при затруднениях сформулировать вопросы к преподавателю.

В конце каждого лабораторного занятия студенты получают «домашнее задание» для закрепления пройденного материала. Домашние задания необходимо выполнять к каждому занятию. Сложные вопросы можно вынести на обсуждение на занятии или на индивидуальные консультации.

#### Перечень методических указаний по дисциплине:

- 1. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть II. Молекулярная физика и термодинамика/ А. А. Валиев, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2017. 28 с.
- 2. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике. Часть III. Электричество и магнетизм/ А.А.Валиев, Е.Р.Газизов, С.П.Курзин. Казань: Изд-во Казанского ГАУ, 2018. 44 с.
- 3. Практикум для самостоятельной подготовки студентов к выполнению лабораторных работ по физике «Изучение законов внешнего фотоэффекта» /Р.Г. Рахматуллина, А.А.Валиев.- Казань: Изд-во Казанского ГАУ, 2021. 27 с.
- 4. Сборник задач по дисциплине «Теплотехника»: Для обучающихся по направлениям подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», 35.03.06 «Агроинженерия», 20.03.01- «Техносферная безопасность» и специальности 23.05.01 «Наземные транспортно-технологические средства». Казань: Казанский государственный аграрный университет, 2022. 130 с. EDN IPIXAG.
- 5. Изучение поверхностного натяжения и внутреннего трения жидкостей : лабораторный практикум. Казань : Казанский государственный аграрный университет, 2022. 38 с.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

| Форма проведения | Используемые           | Перечень             | Перечень             |
|------------------|------------------------|----------------------|----------------------|
| занятия          | информационные         | информационных       | программного         |
|                  | технологии             | справочных систем    | обеспечения          |
|                  |                        | (при необходимости)  |                      |
| Лекции           | Мультимедийные         | Информационно-       | 1. Операционная      |
|                  | технологии в сочетании | правовое обеспечение | система Microsoft    |
|                  | с технологией          | «Гарант-аэро» -      | Windows 7 Enterprise |
|                  | проблемного            | сетевая версия       | для образовательных  |
| Практические     | изложения              |                      | организаций;         |
| занятия          |                        |                      | 2. Офисное ПО из     |

| Форма проведения<br>занятия | Используемые информационные технологии | Перечень информационных справочных систем (при необходимости) | Перечень<br>программного<br>обеспечения                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Лабораторные<br>работы      |                                        |                                                               | состава пакета<br>Microsoft Office<br>Standart 2016;                                                                                                                                                                                                                                                                                                                         |
| Самостоятельная<br>работа   |                                        |                                                               | 3. Антивирусное программное обеспечение Kaspersky Endpoint Security для бизнеса;  4. LMS Moodle - модульная объектноориентированная динамическая среда обучения (Software free General Public License (GPL)).);  5. КОМПАС-3DV14 - система трёхмерного моделирования, универсальная система автоматизированного 2D-проектирования;  4.«Антиплагиат. ВУЗ». ЗАО «Анти-Плагиат» |

# 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

| Лекции       | Учебная аудитория № 813 для проведения занятий лекционного типа.                                         |
|--------------|----------------------------------------------------------------------------------------------------------|
|              | Стулья, парты, доска аудиторная, трибуна, видеопроектор, экран, ноутбук, набор учебно-наглядных пособий. |
| Лабораторные | Специализированная лаборатория № 810 механики, электричества и                                           |
| занятия      | магнетизма.                                                                                              |
|              | 1. Комплекты приборов физических измерений ЕРМ.                                                          |
|              | 2. Комплект демонстрационных приборов.                                                                   |

|                           | 3. Стенды проведения лабораторных работ.                                                                                                                                                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 4. Осциллографы, генераторы, источники напряжения.                                                                                                                                                                                                           |
|                           | 5. Стулья, парты, доска аудиторная, набор учебно-наглядных пособий.                                                                                                                                                                                          |
|                           | Специализированная лаборатория № 808 молекулярной физики.                                                                                                                                                                                                    |
|                           | 1. Прибор по определению коэф. внутреннего трения воздуха.                                                                                                                                                                                                   |
|                           | 2. Прибор по определению адиабатической постоянной.                                                                                                                                                                                                          |
|                           | 3. Весы лаборатории ВАР -200.                                                                                                                                                                                                                                |
|                           | 4. Стулья, парты, доска аудиторная, трибуна, набор учебно-наглядных пособий.                                                                                                                                                                                 |
|                           | Специализированная лаборатория № 812 оптики.                                                                                                                                                                                                                 |
|                           | 1. Стеклянно-призменный спектрометр-монохроматор УМ-2.                                                                                                                                                                                                       |
|                           | 2. Рефрактометр ИРФ-21.                                                                                                                                                                                                                                      |
|                           | 3. Микроскоп « Биолам».                                                                                                                                                                                                                                      |
|                           | 4. Фолоколлориметр КФК-2.                                                                                                                                                                                                                                    |
|                           | 5. Поляриметр «Поломат».                                                                                                                                                                                                                                     |
|                           | 6. Стулья, парты, доска аудиторная, трибуна, набор учебно-наглядных пособий.                                                                                                                                                                                 |
| Самостоятельная<br>работа | Учебная аудитория № 518 - помещение для самостоятельной работы, текущего контроля и промежуточной аттестации.                                                                                                                                                |
|                           | Компьютеры с возможностью подключения к сети «Интернет» и доступом в электронную информационно-образовательную среду Казанского ГАУ, проектор мультимедийный, экран, доска аудиторная, стол и стул для преподавателя, столы и стулья для студентов, трибуна. |