TO THE HIND AT A PROPERTY OF THE PARTY OF TH

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Казанский государственный аграрный университет» (ФГБОУ ВО КАЗАНСКИЙ ГАУ)

Институт «Казанская академия ветеринарной медицины имени Н.Э. Баумана» Кафедра химии

УТВЕРЖДАЮ
Проректор по научной работе и цифровой трансформации, доцент
______ М.Н. Калимуллин
«26» мая 2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«Генная инженерия» (Оценочные средства и методические материалы)

приложение к рабочей программе дисциплины (к рабочей программе практики)

Группа научных специальностей **1.5 Биологические науки**

Научная специальность **1.5.4.** Биохимия

Уровень Подготовка научных и научно-педагогических кадров

> Форма обучения **Очная**

Должность, ученая степень, ученое звание	Ф.И.О.
Программа практики обсуждена и одобрена на заседании кафе года (протокол № 13)	едры химии «10» апреля 2025
Заведующий кафедрой: <u>д.биол.н., профессор</u> Должность, ученая степень, ученое звание	<u>Ахметов Т. М.</u> Ф.И.О.
Рассмотрена и одобрена на заседании методической комиссии академия ветеринарной медицины имени Н.Э. Баумана» «15» мая 2025 года (протокол № 2)	и Института «Казанская
Председатель методической комиссии:	Асрутдиноа Р.А. Ф.И.О.
Согласовано: <u>Директор</u>	<u>Равилов Р.Х,</u> Ф.И.О.
Протокол ученого совета института «Казанская академия вете	ринарной медицины имени

Составитель: зав.кафедрой, д.б.н., профессор

Н.Э. Баумана» № 5 от «26» мая 2025 года

Ахметов Т.М.

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения программы подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 1.5.4. Биохимия, обучающийся по дисциплине «Генная инженерия» должен овладеть следующими результатами:

Таблица 1.1 – Требования к результатам освоения дисциплины

Таблица 1.1 – Требования к результатам освоения дисциплины		
Код	Содержание компетенций	Перечень планируемых результатов
компетенции	обучения по дисциплине	
УК-1	способность к критическому	Знать: современные научные
	анализу и оценке современных	достижения, как генерировать новые идей
	научных достижений,	при решении исследовательских и
	генерированию новых идей при	практических задач, в том числе в
	решении исследовательских и	междисциплинарных областях
	практических задач, в том	Уметь: критически анализировать и
	числе в междисциплинарных	оценивать современные научные
	областях	достижения
		Владеть: навыками проведения научных
		исследований, методами исследования
		применительно к предметной области; к
		критическому анализу и оценке
		современных научных достижений.
ПК-2	способность проводить	Знать: методы изучения закономерности
	современные	функционирования органов и систем
	экспериментальные работы с	организма.
	биологическими объектами	Уметь: анализировать результаты
	различных уровней	исследования закономерности
	организации в природной среде	функционирования органов и систем
	и лабораторных условиях,	организма с использованием знаний
	иметь навыки работы с	физиологических процессов.
	современной аппаратурой	Владеть: основными методиками
		исследований и оценки функционального
		состояния организма животных

2. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Примерные вопросы к зачету

- 1. Генетическая инженерия история развития, основные методы и объекты генной инженерии.
- 2. Определение понятия генетической инженерии.
- 3. Достижения генетической инженерии.
- 4. Источники рисков при создании и использовании ГМО.
- 5. Клонирование генов. Полимеразная цепная реакция.
- 6. Векторы для переноса генов. Характеристика основных групп.
- 7. Амплификация участка ДНК, окружающего известный ген.
- 8. Расщепление генов, геномов на фрагменты для конструирования библиотек.
- 9. Методы скрининга библиотек генов.
- 10. Получение рекомбинантных белков в бактериальных клетках.
- 11. Принципы секвенирования.
- 12. Метод Максама-Гилберта.
- 13. Секвенирование ДНК по Сэнджеру.
- 14. Нокаутирование генов.
- 15. Получение РНК и ДНК аптамеров.
- 16. Создание рандомизированных библиотек.
- 17. Интерференция РНК.
- 18. Микрочиповые технологии.
- 19. Виды и способы получения белковых микрочипов.
- 20. Генная инженерия растений.
- 21. Способы получения трансгенных животных.
- 11. Основные этапы получения рекомбинантных молекул ДНК.
- 12. Способы получения генов.
- 13. Генетический вектор. Виды и требования к генетическим векторам.
- 14. Методы внедрения вектора в клетку.
- 15. Генетическая инженерия растений. Основные этапы и её задачи.
- 16. Трансформация растений с помощью агробактерий.
- 17. Генноиженерные продукты. Способы их получения.
- 18. Методы контроля ГМО.
- 19. Трансгенез. Способы получения трансгенных животных. Основные этапы.
- 20. Ретровирусные векторы в трансгенезе и их значение.
- 21. Антисмысловая РНК. Введение генов кодирующих антисмысловую РНК как новый подход в генной инженерии.
 - 22. Клонирование. Проблемы. Виды клонировании, их значение.
 - 23. Инженерная энзимология. Цели и задачи науки.
 - 24. Ферменты. Классификация и свойства.
- 25. Источники ферментов для инженерной энзимологии. Связь инженерной энзимологии с другими разделами молекулярной биотехнологии.
- 26. Иммобилизованные ферменты. Особенности иммобилизованных ферментов, позволяющие использовать их на промышленном уровне.
 - 27. Основные направления применения иммобилизованных ферментов.
 - 28. Способы иммобилизации ферментов
 - 29. Биореакторы, принцип действия. Понятие о биосенсорах.
 - 30. Методы ИФА. Принцип метода. Области применения.

Вопросы к тесту Демонстрационная версия

1.Генная инженерия – это ...:

- а) метод, основанный на выделении и культивировании тканей и клеток высших организмов
- б) изменение первичной структуры ДНК в конкретном ее участке, что, в конечном счете, приводит

к изменению фенотипа биологического объекта, используемого в биотехнологических процессах

в) метод создания рекомбинантных или гибридных ДНК

2.Плазмида – это ...:

- а) определенный штамм кишечной палочки, используемый для биотехнологических целей
- б) кольцеобразную молекулу ДНК внехромосомный элемент генетической информации
- в) участок цепи РНК, несущий информацию о структуре гена
- г) вирус, размножающийся в цитоплазме микробной клетки
- д) хромосому, используемую в качестве вектора для введения ДНК в клетки бактерий

3.Отбор трансформированных клеток, содержащих рекомбинантную ДНК (гибридную плазмиду) проводят:

- а) тестированием на резистентность к различной температуре
- б) тестированием на резистентность к определенным антибиотикам
- в) по способности окрашиваться гематоксилином
- г) по морфологическим признакам
- д) по скорости роста и размножения

4.Требования к векторам ДНК:

- а) отсутствие сайта рестрикции, в который осуществлена вставка
- б) большой размер
- в) видоспецифичность
- г) наличие селективных генетических маркеров для идентификации реципиентных клеток, несущих рекомбинантную ДНК

5. Вектор на основе плазмиды предпочтительней вектора на основе фаговой ДНК благодаря:

- а) большому размеру;
- б) меньшей токсичности;
- в) большей частоты включения;
- г) отсутствия лизиса клетки хозяина.

6.Какая бактерия является природным хозяином фага λ?

- a) Escherichia coli
- б) Haemophius influenzae
- B) Streptomyces albus
- r) Haemophilus parainfluenzae

7. Рестриктазы какого класса наиболее часто используются при конструировании гибридных молекул ДНК?

- a) I
- б) II
- B) III

8. Что требует ДНК-лигаза E. coli в качестве кофактора?

- а) дифосфопиридиннуклеотид
- б) АТР
- в) ионы магния

9.С помощью какого фермента в 1972 г. был выполнен первый эксперимент по рекомбинации молекул ДНК in vitro?

- а) концевой дезоксинуклеотидилтрансферазы
- б) нуклеазы Ва131
- в) обратной транскриптазы
- г) ДНК-полимераза І

10.Укажите рестриктазы класса І.

- a) EcoK
- б) ЕсоВ
- B) Alul
- г) EcoRI
- д) Pstl

11. Что выступает кофакторами для рестриктаз 1 класса?

- a) ATP
- б) SAM
- в) ионы магния
- г) дифосфопиридиннуклеотид
- д) ионы кобальта

12.Молекула, которую предполагается использовать в качестве вектора, лолжна обладать

способностью к:

- а) трансформации;
- б) транспозиции;
- в) трансмиссии;
- г) трансдукции

13. Какими ферментативными активностями обладает обратная транскриптаза?

- а) ДНК-полимеразной
- б) активностью РНКазы Н
- в) ДНК-эндонуклеазной
- г) полимеразной
- д) экзонуклеазной

14. Какая векторная плазмида была первой?

- a) pSC101
- б) ColEl
- в) pRSF2124
- г) pMB8

15.При выделении лактозного оперона из клетки использовано явление:

- а) трансформации;
- б) транспозиции;
- в) трансфекции;
- г) трансдукции

16.Первым химически синтезированным геном был ген:

- а) тирозиновой тРНК;
- б) аланиновой тРНК;
- в) лейциновой тРНК;
- г) метиониновой тРНК

17. Явление обратной транскрипции характерно для ДНК:

- а) кишечной палочки;
- б) бактериальных плазмид;
- в) ретровирусов;
- г) умеренных бактериофагов

18. Ферменты, нарезающие ДНК на фрагменты, носят название:

- а) лигазы;
- б) трансферазы;
- в) топоизомеразы;
- г) рестриктазы

19.Для выделения клеток из больших объемов культуральной среды применяют:

- а) мембранную фильтрацию
- б) низкоскоростное центрифугирование
- в) инкубацию в термостате
- 20. Для получения протопластов из клеток грибов используется:
- а) лизоцим
- б) трипсин
- в) «улиточный фермент»
- г) пепсин

21.За образованием протопластов из микробных клеток можно следить с помощью методов:

- а) вискозиметрии
- б) колориметрии
- в) фазово-контрастной микроскопии
- г) электронной микроскопии

22.Для получения протопластов из бактериальных клеток используется:

- а) лизоцим
- б) «улиточный фермент»
- в) трипсин
- г) папаин

23.Высокая стабильность протопластов достигается при хранении:

- а) на холоду;
- б) в гипертонической среде;
- в) в среде с добавлением антиоксидантов;
- г) в анаэробных условиях.

24.Полиэтиленгликоль (ПЭГ), вносимый в суспензию протопластов:

- а) способствует их слиянию;
- б) предотвращает их слияние;
- в) повышает стабильность суспензии;
- г) предотвращает микробное заражение.

25.Для протопластирования наиболее подходят суспензионные культуры:

- а) в лаг-фазе;
- б) в фазе ускоренного роста;
- в) в логарифмической фазе;
- г) в фазе замедленного роста;
- д) в стационарной фазе;

26. Гибридизация протопластов возможна, если клетки исходных растений обладают:

- а) половой совместимостью;
- б) половой несовместимостью;
- в) совместимость не имеет существенного значения.

27. Какой из макроносителей для доставки ДНК в растительную клетку, используемый при баллистическом способе трансформации, способен вызывать цитотоксический эффект?

- а) вольфрам;
- б) золото;
- в) углеродистые частицы.

28.Преимуществами генно-инженерного инсулина являются:

- а) высокая активность;
- б) меньшая аллергенность;
- в) меньшая токсичность;
- г) большая стабильность.

29.Преимущества получения видоспецифических для человека белков путем микробиологического синтеза:

- а) простота оборудования;
- б) экономичность;
- в) отсутствие дефицитного сырья;
- г) снятие этических проблем.

30. Разработанная технология получения рекомбинантного эритропоэтина основана на экспрессии гена:

- а) в клетках бактерий;
- б) в клетках дрожжей;
- в) в клетках растений;
- г) в культуре животных клеток.

31.Первыми трансгенными растениями, у которых наблюдалась экспрессия чужеродных

генов в геноме, были...

- а) растения арабидопсиса;
- б) растения табака;
- в) растения томата;
- г) растения сои.

32. Какой способ введения чужеродной ДНК в геном растения наиболее часто применяется?

- а) баллистическая трансформация;
- б) агробактериальная трансформация;
- в) электропорация;
- г) микроинъекция.

33. Какова эффективность агробактериальной трансформации у растений Классов двудольные и однодольные?

- а) одинаковая;
- б) эффективность агробактериальной трансформации у растений класса двудольные выше, чем у

растений класса однодольные;

в) эффективность агробактериальной трансформации у растений класса двудольные ниже, чем у

растений класса однодольные.

34.Особенностью пептидных факторов роста тканей являются:

- а) тканевая специфичность;
- б) видовая специфичность;
- в) образование железами внутренней секреции;
- г) образование вне желез внутренней секреции;

35.Преимущество ИФА перед определением инсулина по падению концентрации глюкозы в крови животных:

- а) меньшая стоимость анализа;
- б) ненужность дефицитных реагентов;
- в) легкость освоения;
- г) в отсутствии влияния на результаты анализа других белков;
- д) продолжительность времени анализа.

36.При оценке качества генно-инженерного инсулина требуется уделять особенно большее внимание тесту на:

- а) стерильность;
- б) токсичность;
- в) аллергенность;
- г) пирогенность.

37.Основное преимущество полусинтетических производных эритромицина - азитро-,рокситро-, кларитро-мицина перед природным антибиотиком обусловлено:

- а) меньшей токсичностью;
- б) бактерицидностью;
- в) активностью против внутриклеточно локализованных паразитов;
- г) действием на грибы.

38. Антибиотики с самопромотированным проникновением в клетку патогена:

- а) бета-лактамы;
- б) аминогликозиды;
- в) макролиды;
- г) гликопептиды.

39.Появление множественной резистентности опухолей к

противоопухолевым агентам обусловлено:

- а) непроницаемостью мембраны;
- б) ферментативной инактивацией;
- в) уменьшением сродства внутриклеточных мишеней;
- г) активным выбросом.

40.Практическое значение полусинтетического аминогликозида амикацина обусловлено:

- а) активностью против анаэробных патогенов;
- б) отсутствием нефротоксичности;
- в) устойчивостью к защитным ферментам у бактерий, инактивирующим другие аминогликозиды;
 - г) активностью против патогенных грибов.

Коллоквиум и семинар дискуссия

Цель (проблема): развитие способности к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях

Задача: Индивидуальная презентация ответов на поставленные вопросы и их обсуждение в группе

Ход дискуссии: аспиранты заранее получают общее задание, но с индивидуальными особенностями за неделю проведения коллоквиума и обсуждают в группе, чтобы не допустить дублирования аргументов и фактов, затем публично проводят презентацию (3-5 мин.) и обсуждают аргументы друг друга.

Ожидаемый (е) результат (ы): в ходе обсуждения аспиранты должны освоить и продемонстрировать:

Знание учебного материала в соответствии с учебной программой дисциплины (степень освоения имеющейся литературы по теме, учебному вопросу); способность дать оценку существующим точкам зрения по раскрываемой проблеме; творческое владение понятийным аппаратом истории и философии науки).

Степень проявления творчества и самостоятельности при раскрытии обсуждаемого вопроса (умение выделять главные аспекты проблемы, нестандартно, оригинально мыслить; способность отстаивать свою позицию, опираясь на знание теории вопроса; умение формулировать актуальные вопросы общественной жизни, развития военной теории и практики).

Доказательность и убедительность выступления (положения, приводимые в выступлении, должны содержать определенную систему аргументов, раскрывающую позицию курсанта по данной проблеме, убеждать в правильности этой позиции).

Знание рекомендованной литературы.

Критерии оценки: количество баллов или удовлетворительно, хорошо, отлично оценка «отлично» выставляется аспиранту, если он, он: продемонстрировал уверенные знания об основных философов-представителей философских школ (не менее 2-х), использовал методы и приемы критического анализа (не менее 2-х); использовал дополнительные литературные источники и Интернет ресурсы (не менее 3-х); показал умение логически и последовательно аргументировать свою точку зрения (не менее 2-х аргументов); проявил высокую активность в обсуждении (не менее 2-х вопросов)

Эссе

Проблемная задача: научиться формулировать свое мнение и уметь его обосновать.

Главная цель – определение умения выделять, формулировать и идентифицировать основания конкретной проблемы, демонстрация навыков критического и логического мышления, владение категориально-понятийным аппаратом бухгалтерского финансового учета, проявление эрудиции. Эссе –это особый литературный и научный жанр, который (в нашем случае) предполагает размышление или комментарий от первого лица по поводу конкретной проблемы. Оно представляет собой собственную рациональную рефлексию (бук. - отражение разумом) на актуальные проблемы.

Написание эссе помогает взглянуть на конкретную проблему со стороны, дает возможность развить навыки междисциплинарного и комплексного подхода, способствует освоению системного метода.

3. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Лекции оцениваются по посещаемости, активности, умению выделить главную мысль.

Практические занятия оцениваются по самостоятельности выполнения работы, грамотности в оформлении, правильности выполнения.

Самостоятельная работа оценивается по качеству и количеству выполненных домашних работ, грамотности в оформлении, правильности выполнения.

Промежуточная аттестация проводится в форме зачета.

Критерии оценки зачета

Оценка «Зачтено» - аспирант демонстрирует полное знание учебного материала: знает основные понятия в рамках обсуждаемого вопроса, методы изучения и их взаимосвязь между собой, практические проблемы и имеет представление о перспективных направлениях разработки рассматриваемого вопроса

Оценка «Не зачтено» - аспирант демонстрирует существенные пробелы в знаниях учебного материала: не знает основные понятия, методы изучения, в рамках обсуждаемого вопроса не имеет представления об основных практических проблемах

Критерии оценки экзамена в тестовой форме: количество баллов или удовлетворительно, хорошо, отлично. Для получения соответствующей оценки на экзамене по курсу используется накопительная система балльно-рейтинговой работы студентов. Итоговая оценка складывается из суммы баллов или оценок, полученных по всем разделам курса и суммы баллов полученной на экзамене.

Критерии оценки уровня знаний студентов с использованием теста на экзамене по учебной дисциплине

Оценка	Характеристики ответа студента
Отлично	86-100 % правильных ответов
Хорошо	71-85 %
Удовлетворительно	51- 70%
Неудовлетворительно	Менее 51 %

Оценка «зачтено» соответствует критериям оценок от «отлично» до удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

Количество баллов и оценка неудовлетворительно, удовлетворительно, хорошо, отлично определяются программными средствами по количеству правильных ответов к количеству случайно выбранных вопросов.

Критерии оценивания компетенций, следующие:

- 1. Ответы имеют полные решения (с правильным ответом). Их содержание свидетельствует об уверенных знаниях обучающегося и о его умении решать профессиональные задачи, оценивается в 5 баллов (отлично);
- 2. Более 75 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует о достаточных знаниях обучающегося и его умении решать профессиональные задачи 4 балла (хорошо);
- 3. Не менее 50 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует об удовлетворительных знаниях обучающегося и о его ограниченном умении решать профессиональные задачи, соответствующие его будущей квалификации 3 балла (удовлетворительно);
- 4. Менее 50 % ответов имеют решения с правильным ответом. Их содержание свидетельствует о слабых знаниях обучающегося и его неумении решать профессиональные задачи— 2 балла (неудовлетворительно).